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Abstract

In this paper, we construct a new class of separable Banach spaces KSp, for
1 � p � ∞, each of which contains all of the standard Lp spaces, as well as
the space of finitely additive measures, as compact dense embeddings. Equally
important is the fact that these spaces contain all Henstock–Kurzweil integrable
functions and, in particular, the Feynman kernel and the Dirac measure, as norm
bounded elements. As a first application, we construct the elementary path
integral in the manner originally intended by Feynman. We then suggest that
KS2 is a more appropriate Hilbert space for quantum theory, in that it satisfies
the requirements for the Feynman, Heisenberg and Schrödinger representations,
while the conventional choice only satisfies the requirements for the Heisenberg
and Schrödinger representations. As a second application, we show that the
mixed topology on the space of bounded continuous functions, Cb[Rn], used
to define the weak generator for a semigroup T (t), is stronger than the norm
topology on KSp. (This means that, when extended to KSp, T (t) is strongly
continuous, so that the weak generator on Cb[Rn] becomes a strong generator
on KSp.)

PACS numbers: 02.30.Rz, 02.30.Sa

1. Introduction

The standard university analysis courses tend to produce a natural bias and unease concerning
the use of finitely additive set functions as a basis for the general theory of integration (despite
the efforts of Alexandrov [AX], Bochner [BR], Dubins [DU], Dunford and Schwartz [DS],
de Finetti [DFN] and Yosida and Hewitt [YH]). (We should remember that the concept of
measure was, and is, important for geometry and some, but not all, parts of analysis. In other
parts, the concept of integral tends to dominate.)
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Without denying an important place for countable additivity, Dubins ([DU], [BD], and
[DUK]) argues forcefully for the intrinsic advantages in using finite additivity in the basic
axioms of probability theory. (The penetrating analysis of the foundations of probability
theory by de Finetti [DFN] also supports this position.) In a very interesting paper [DU],
Dubins shows that the Wiener process has a number of ‘cousins’, related processes with the
same finite dimensional distributions as the Wiener process. For example, there is one cousin
with polynomial paths and another with piecewise linear paths. Since the Wiener measure is
unique, these cousins must necessarily have finitely additive limiting distributions.

The most important of the finitely additive measures is that generated by the Henstock–
Kurzweil integral (HK-integral), which generalizes the Lebesgue, Bochner and Pettis integrals.
(It was discovered independently by Henstock [HS1] and Kurzweil [KW1].) The HK-integral
is equivalent to the Denjoy integral. However, it is much easier to understand (and learn)
compared to the Denjoy and Lebesgue integrals, and provides useful variants of the same
theorems that have made the Lebesgue integral so important. Furthermore, it arises from
a simple (transparent) generalization of the Riemann integral that is taught in elementary
calculus. Loosely speaking, one uses a version of the Riemann integral with the interior points
chosen first, while the size of the base rectangle around any interior point is determined by an
arbitrary positive function defined at that point (see section 2). For more detail and different
perspectives, see Gordon [GO], Henstock [HS], Kurzweil [KW] or Pfeffer [PF].

1.1. Purpose

Clearly, the most important factor preventing the widespread use of the HK-integral in
engineering, mathematics and physics has been the lack of a natural Banach space structure for
this class of functions (as is the case for the Lebesgue integral). The purpose of this paper is to
introduce a new class of Banach spaces KSp(�), 1 � p � ∞, with � ⊂ Rn, (n = 1, 2, . . .).
These are all separable spaces that contain the corresponding Lp spaces as dense, continuous,
compact embeddings. Our original interest was in the fact that each of these spaces contains
the Denjoy integrable functions, as well as all the finitely additive measures. These spaces
are perfect for the highly oscillatory functions that occur in quantum theory and nonlinear
analysis.

1.2. Summary

In section 2, we give a brief introduction to the elementary HK-integral, its properties and
relationship to the Lebesgue integral. In section 3, we construct the KS-spaces and derive
some of the important properties of these spaces. We then prove that the Fourier transform
and convolution operators have bounded extensions to KS2. These results are applied to the
construction of the elementary path integral in the manner originally intended by Feynman.
We then discuss our contention that KS2 is a more natural Hilbert space for quantum theory
as compared to the conventional choice.

2. HK-integral

In this section, we introduce the HK-integral (in the simplest case) and present some of its
properties. Our purpose is to provide those researchers unfamiliar with this integral a concrete
sense of its simplicity. Proofs of all stated results can be found in Gordon [GO]. The general
case can be found in Henstock [HS] or Pfeffer [PF].
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Definition 1. Let [a, b] ⊂ R, let δ(t) map [a, b] → (0,∞), and let P =
{t0, τ1, t1, τ2, . . . , τn, tn}, where a = t0 � τ1 � t1 � · · · � τn � tn = b. We call P an
HK-partition for δ, if for 1 � i � n, ti−1, ti ∈ (τi − δ(τi), τi + δ(τi)).

Remark 2. Gordon writes P = {(τi, [ti−1, ti]) : 1 � i � n} and calls {τi} the tags and
{[ti−1, ti]} the collection of tagged intervals. Also, the phrase nearly everywhere (n.e.) means
except for a countable set.

Definition 3. The function f (t), t ∈ [a, b], is said to have a HK-integral if there is a number
F [a, b] such that, for each ε > 0, there exists a function δ from [a, b] → (0,∞) such that,
whenever P is a HK-partition for δ, then (with �ti = ti − ti−1)∣∣∣∣∣

n∑
i=1

�tif (τi) − F [a, b]

∣∣∣∣∣ < ε.

In this case, we write F [a, b] = (HK)-
∫ b

a
f (t) dt .

Theorem 4. Let f (t) : [a, b] → R.

(1) If f (t) is Lebesgue integrable on [a, b], then it is HK-integrable on [a, b] and HK-∫ b

a
f (t) dt = L-

∫ b

a
f (t) dt .

(2) If f (t) is HK-integrable and bounded on [a, b], then it is Lebesgue integrable on [a, b].
(3) If f (t) is HK-integrable and nonnegative on [a, b], then it is Lebesgue integrable on

[a, b].
(4) If f (t) is HK-integrable on every measurable subset of [a, b], then it is Lebesgue integrable

on [a, b].

Theorem 5. Let F : [a, b] → R be continuous. If F is differentiable nearly everywhere
on [a, b], then F ′ is HK-integrable on [a, b] and HK-

∫ t

a
F ′(s) ds = F(t) − F(a) for each

t ∈ [a, b].

The last result shows in what sense we can think of the HK-integral as the reverse of
the derivative. (The result is not true for Lebesgue integrals. The standard example is
F ′(t) = 2tsin(π/t2) − (2π/t)cos(π/t2) for all non-rational numbers on 0 < t < 1 and equal
to 0 at all rational points.)

3. KSp spaces

In order to construct the spaces of interest, first recall that the HK-integral is equivalent to the
Denjoy integral (see Henstock [HS] or Pfeffer [PF]). In the one-dimensional case, Alexiewicz
[AL] has shown that the class D(R), of Denjoy integrable functions, can be normed in the
following manner: for f ∈ D(R), define ‖f ‖D by

‖f ‖D = sup
s

∣∣∣∣
∫ s

−∞
f (r) dr

∣∣∣∣ .
It is clear that this is a norm, and it is known that D(R) is not complete (see Alexiewicz [AL]).
Replacing R by Rn, for f ∈ D(Rn) we have the following generalization:

‖f ‖D = sup
r>0

∣∣∣∣
∫

Br

f (x) dx

∣∣∣∣ = sup
r>0

∣∣∣∣
∫

Rn

EBr
(x)f (x) dx

∣∣∣∣ < ∞, (3.1)

where Br is any closed cube of diagonal r centered at the origin in Rn, with sides parallel to
the coordinate axes, and EBr

(x) is the characteristic function of Br .
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Now, fix n, and let Qn be the set {x = (x1, x2 . . . , xn) ∈ Rn} such that xi is rational for
each i. Since this is a countable dense set in Rn, we can arrange it as Qn = {x1, x2, x3, . . .}. For
each l and i, let Bl (xi ) be the closed cube centered at xi , with sides parallel to the coordinate
axes and diagonal rl = 2−l , l ∈ N. Now choose the natural lexicographical order which
maps N × N bijectively to N, and let {Bk, k ∈ N} be the resulting set of (all) closed cubes
{Bl (xi ) |(l, i) ∈ N × N} centered at a point in Qn. Let Ek(x) be the characteristic function of
Bk , so that Ek(x) is in Lp[Rn] ∩ L∞[Rn] for 1 � p < ∞. Define Fk(·) on L1[Rn] by

Fk(f ) =
∫

Rn

Ek(x)f (x) dx. (3.2)

It is clear that Fk(·) is a bounded linear functional on Lp[Rn] for each k, ‖Fk‖∞ � 1 and, if
Fk(f ) = 0 for all k, f = 0 so that {Fk} is fundamental on Lp[Rn] for 1 � p � ∞. Fix tk > 0
such that

∑∞
k=1 tk = 1 and define a measure dP(x, y) on Rn × Rn by

dP(x, y) =
[ ∞∑

k=1

tkEk(x)Ek(y)

]
dx dy.

We first construct our Hilbert space. Define an inner product (·) on L1[Rn] by

(f, g) =
∫

Rn×Rn

f (x)g(y)∗dP(x, y)

=
∞∑

k=1

tk

[∫
Rn

Ek(x)f (x) dx

] [∫
Rn

Ek(y)g(y) dy

]∗
. (3.3)

We use a particular choice of tk in Gill and Zachary [GZ], which is suggested by physical
analysis in another context. We call the completion of L1[Rn], with the above inner product,
the Kuelbs–Steadman space, KS2[Rn]. Following suggestions of Gill and Zachary, Steadman
[ST] constructed this space by adapting an approach developed by Kuelbs [KB] for other
purposes. Her interest was in showing that L1[Rn] can be densely and continuously embedded
in a Hilbert space which contains the HK-integrable functions. To see that this is the case, let
f ∈ D[Rn], then

‖f ‖2
KS2 =

∞∑
k=1

tk

∣∣∣∣
∫

Rn

Ek(x)f (x) dx

∣∣∣∣
2

� sup
k

∣∣∣∣
∫

Rn

Ek(x)f (x) dx

∣∣∣∣
2

� ‖f ‖2
D ,

so f ∈ KS2[Rn].

Theorem 6. For each p, 1 � p � ∞, KS2[Rn] ⊃ Lp[Rn] as a dense subspace.

Proof. By construction, KS2[Rn] contains L1[Rn] densely, so we need only show that
KS2[Rn] ⊃ Lq[Rn] for q �= 1. If f ∈ Lq[Rn] and q < ∞, we have

‖f ‖KS2 =
[ ∞∑

k=1

tk

∣∣∣∣
∫

Rn

Ek(x)f (x) dx

∣∣∣∣
2q

q

]1/2

�
[ ∞∑

k=1

tk

(∫
Rn

Ek(x) |f (x)|q dx

) 2
q

]1/2

� sup
k

(∫
Rn

Ek(x)|f (x)|qdx

) 1
q

� ‖f ‖q .
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Hence, f ∈ KS2[Rn]. For q = ∞, first note that vol(Bk)
2 �

[
1

2
√

n

]2n
, so we have

‖f ‖KS2 =
[ ∞∑

k=1

tk

∣∣∣∣
∫

Rn

Ek(x)f (x) dx

∣∣∣∣
2
]1/2

�
[[ ∞∑

k=1

tk[vol(Bk)]
2

]
[ess sup |f |]2

]1/2

�
[

1

2
√

n

]n

‖f ‖∞ .

Thus f ∈ KS2[Rn], and L∞[Rn] ⊂ KS2[Rn]. �

The fact that L∞[Rn] ⊂ KS2[Rn], while KS2[Rn] is separable makes it clear in a very forceful
manner that whether a space is separable or not depends on the topology. Before proceeding
to additional study, we need to construct KSp[Rn].

To construct KSp[Rn] for all p and for f ∈ Lp, define

‖f ‖KSp =
{{∑∞

k=1 tk
∣∣∫

Rn Ek(x)f (x) dx
∣∣p}1/p

, 1 � p < ∞,

supk�1

∣∣∫
Rn Ek(x)f (x) dx

∣∣ , p = ∞.

It is easy to see that ‖ · ‖KSp defines a norm on Lp. If KSp is the completion of Lp with respect
to this norm, we have

Theorem 7. For each q, 1 � q � ∞, KSp[Rn] ⊃ Lq[Rn] as a dense continuous embedding.

Proof. As in the previous theorem, by construction KSp[Rn] contains Lp[Rn] densely, so
we need only show that KSp[Rn] ⊃ Lq[Rn] for q �= p. First, suppose that p < ∞. If
f ∈ Lq[Rn] and q < ∞, we have

‖f ‖KSp =
[ ∞∑

k=1

tk

∣∣∣∣
∫

Rn

Ek(x)f (x) dx

∣∣∣∣
qp

q

]1/p

�
[ ∞∑

k=1

tk

(∫
Rn

Ek(x) |f (x)|q dx

) p

q

]1/p

� sup
k

(∫
Rn

Ek(x) |f (x)|q dx

) 1
q

� ‖f ‖q .

Hence, f ∈ KSp[Rn]. For q = ∞, we have

‖f ‖KSp =
[ ∞∑

k=1

tk

∣∣∣∣
∫

Rn

Ek(x)f (x) dx

∣∣∣∣
p
]1/p

�
[[ ∞∑

k=1

tk[vol(Bk)]
p

]
[ess sup |f |]p

]1/p

� M ‖f ‖∞ .

Thus f ∈ KSp[Rn], and L∞[Rn] ⊂ KSp[Rn]. The case p = ∞ is obvious. �

Theorem 8. For KSp, 1 � p � ∞, we have

(1) If f, g ∈ KSp, then ‖f + g‖KSp � ‖f ‖KSp + ‖g‖KSp (Minkowski inequality).
(2) If K is a weakly compact subset of Lp, it is a compact subset of KSp.
(3) If 1 < p < ∞, then KSp is uniformly convex.
(4) If 1 < p < ∞ and p−1 + q−1 = 1, then the dual space of KSp is KSq .
(5) KS∞ ⊂ KSp, for 1 � p < ∞.

5
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Proof. The proof of (1) follows from the classical case for sums. The proof of (2) follows
from the fact that, if {fn} is any weakly convergent sequence in K with limit f , then∫

Rn

Ek(x)[fn(x) − f (x)] dx → 0

for each k. It follows that {fn} converges strongly to f in KSp.
The proof of (3) follows from a modification of the proof of the Clarkson inequalities for

lp norms.
In order to prove (4), observe that, for p �= 2, 1 < p < ∞, the linear functional

Lg(f ) = ‖g‖2−p

KSp

∞∑
k=1

tk

∣∣∣∣
∫

Rn

Ek(x)g(x) dx

∣∣∣∣
p−2 ∫

Rn

Ek(y)f (y)∗ dy

is a unique duality map on KSq for each g ∈ KSp and that KSp is reflexive from (3). To
prove (5), note that f ∈ KS∞ implies that

∣∣∫
Rn Ek(x)f (x) dx

∣∣ is uniformly bounded for all k.
It follows that

∣∣∫
Rn Ek(x)f (x) dx

∣∣p is uniformly bounded for each p, 1 � p < ∞. It is now
clear from the definition of KS∞ that[ ∞∑

k=1

tk

∣∣∣∣
∫

Rn

Ek(x)f (x) dx

∣∣∣∣
p
]1/p

� ‖f ‖KS∞ < ∞.

Note that, since L1[Rn] ⊂ KSp[Rn] and KSp[Rn] is reflexive for 1 < p < ∞, we see that the
second dual

{
L1[Rn]

}∗∗ = M[Rn] ⊂ KSp[Rn]. Recall that M[Rn] is the space of bounded
finitely additive set functions defined on the Borel sets B[Rn]. This space contains the Dirac
delta measure and the free-particle Green’s function for the Feynman integral. We will return
to M[Rn] in the next section.

In many applications, it is convenient to formulate problems on one of the standard
Sobolev spaces Wm

p (Rn). We close this section with an admittedly incomplete, but most direct
approach to the corresponding extension for the KSp spaces. First recall that the space

Xm
p (Rn) = {Bα ∗ g = (I − )−α/2g : g ∈ Lp(Rn), 0 < α < n, 0 < α < m}

coincides with Wm
p (Rn) when 1 < p < ∞ and m > 0, where Bα is the Bessel potential of

order α, is the Laplacian and ∗ is the convolution operator.

Theorem 9. The completion of Xm
p (Rn) relative to the KSp(Rn) norm defines the space

KSm
p (Rn), which contains Wm

p (Rn) as a continuous dense and compact embedding.

Proof. Since Bα ∈ L1(Rn), we see from Young’s inequality for convolutions that
Bα ∗ g ∈ Lp(Rn) if g ∈ Lp(Rn) and 0 < α < n. �

In closing, we first recall that a function f such that
∫
K

|f (x)|p dx < ∞ for every compact
set K in Rn is said to be in L

p

loc(R
n). We can easily show that L

p

loc(R
n) ⊂ KSq(Rn), 1 � q �

∞, for all p, 1 � p � ∞. This means that KSq(Rn) contains a large class of distributions
(see Adams [A]).

3.1. Extension of Fourier and convolution operators

Let L[B], L[H] denote the bounded linear operators on B,H respectively, where we assume
that the separable Banach space B is a continuous dense embedding in the separable Hilbert
space H. The following is the major result in Gill et al [GBZS]. It generalizes the well-known
result of von Neumann [VN1] for bounded operators on Hilbert spaces.

6
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Theorem 10. Let B be a separable Banach space and let A be a bounded linear operator on
B. Then A has a well-defined adjoint A∗ defined on B such that

(1) the operator A∗A � 0 (maximal accretive),
(2) (A∗A)∗ = A∗A (selfadjoint), and
(3) I + A∗A has a bounded inverse.

The proof depends on the fact that, given a separable Banach space B, there always exist
Hilbert spaces H1 and H2 such that H1 ⊂ B ⊂ H2 as continuous dense embeddings, with H1

determined by H2 (see [GBZS]). If A is any bounded linear operator on B, we define A∗ by

A∗x = J−1
1 [(A1)

′]J2|B(x), (3.4)

where A1 is A restricted to H1, J2|B maps B into H′
2 and J−1

1 maps H′
1 onto H1.

It is not clear that A need have a bounded extension to H2. On the other hand, the theorem
by Lax [LX] states that

Theorem 11. If A is a bounded linear operator on B such that A is selfadjoint (i.e.,
(Ax, y)H2 = (x,Ay)H2 for all x, y,∈ B ), then A is bounded on H2 and ‖A‖H2

� k ‖A‖B
with k constant.

Since A∗A is selfadjoint on B, it is natural to expect that the same is true on H2. However,
this need not be the case. To obtain a simple counterexample, recall that, in standard notation,
the simplest class of bounded linear operators on B is B ⊗ B′, in the sense that

B ⊗ B′ : B → B, by Ax = (b ⊗ b′)x = 〈x, b′〉b.

Thus, if b′ is in B′\H′
2, then J2{J−1

1 [(A1)
′]J2|B(x)} need not be in H′

2, so that A∗A is not
defined as an operator on all of H2 and thus, cannot have a bounded extension. We can now
state the correct extension of theorem 11.

Theorem 12. Let A be a bounded linear operator on B. If B′ ⊂ H2, then A has a bounded
extension to L[H2], with ‖A‖H2

� k ‖A‖B with k constant.

Proof. The proof is now easy if, we observe that, with the stated condition,
J2
{
J−1

1 [(A1)
′]J2|B(x)

}
is in H′

2 for all x ∈ B. It follows that, for any bounded linear
operator A defined on B, the operator T = A∗A is selfadjoint on H2. Thus, by Lax’s
theorem, T is bounded on H2, with ‖A∗A‖H2 = ‖A‖2

H2
� ‖A∗A‖B � k‖A‖2

B, where
k = inf

{
M|‖A∗A‖B � M‖A‖2

B
}
. �

We can now use theorem 12 to prove that F and C, the Fourier (transform) operator and the
convolution operator respectively, defined on L1[Rn], have bounded extensions to KS2[Rn].
It should be noted that this theorem also implies that both operators have bounded extensions
to all Lp[Rn] spaces for 1 � p < ∞. This is the first proof based on functional analysis,
while the traditional proof is obtained via rather deep methods of (advanced) real analysis.

Theorem 13. Both F and C extend to bounded linear operators on KS2[Rn].

Proof. To prove our result, first note that C0[Rn], the bounded continuous functions on Rn

which vanish at infinity, is contained in KS2[Rn] . Now F is a bounded linear operator from
L1[Rn] to C0[Rn], so we can consider it as a bounded linear operator from L1[Rn] to KS2[Rn].
Since L1[Rn] is dense in KS2[Rn] and L∞[Rn] ⊂ KS2[Rn], by theorem 12 F extends to a
bounded linear operator on KS2[Rn].

7
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To prove that C has a bounded extension, fix g in L1[Rn] and define Cg on L1[Rn] by

Cg(f )(x) =
∫

g(y)f (x − y) dy.

Once again, since Cg is bounded on L1[Rn] and L1[Rn] is dense in KS2[Rn], by theorem 12
it extends to a bounded linear operator on KS2[Rn]. Now use the fact that convolution is
commutative to get that Cf is a bounded linear operator on L1[Rn] for all f ∈ KS2[Rn].
Another application of theorem 12 completes the proof. �

We now return to M[Rn].

Definition 14. A uniformly bounded sequence {μk} ⊂ M[Rn] is said to converge weakly to μ

(μn
w→ μ), if, for every bounded uniformly continuous function h(x),∫

Rn

h(x) dμn →
∫

Rn

h(x) dμ.

Theorem 15. If μn
w→ μ in M[Rn], then μn

s→ μ (strongly) in KSp[Rn].

Proof. Since the characteristic function of a closed cube is a bounded uniformly continuous
function, μn

w→ μ in M[Rn] implies that∫
Rn

Ek(x) dμn →
∫

Rn

Ek(x) dμ

for each k, so that limn→∞ ‖μn − μ‖KSp = 0. �

A little reflection gives

Theorem 16. The space KS2[Rn] is a commutative Banach algebra with unit.

In closing, it is clear that all bounded linear operators on Lp[Rn] have extensions to KS2[Rn].
It is easy to see that they also have densely defined closed extensions to KSp[Rn] for p �= 2.
We have not been able to show that these extensions are bounded.

4. Applications

4.1. Markov processes

In the study of Markov processes, two of the natural spaces on which to formulate the theory,
Cb[Rn], the space of bounded continuous functions, or UBC[Rn], the bounded uniformly
continuous functions, do not have the expected properties. It is well known that the semigroups
associated with Markov processes, whose generators have unbounded coefficients, are not
necessarily strongly continuous when defined on Cb[Rn]. This means that the generator of
such a semigroup does not exist in the standard sense. As a consequence, a number of weaker
(equivalent) definitions have been developed in the literature. For a good discussion of this
and related problems see Lorenzi and Bertoldi [LB].

Definition 17. A sequence of functions {fn} in Cb[Rn] is said to converge to f in the mixed
topology, written τM -lim fn = f , if supn∈N ‖fn‖∞ � M and ‖fn − f ‖∞ → 0 uniformly on
every compact subset of Rn.

Theorem 18. If {fn} converges to f in the mixed topology on Cb[Rn], then {fn} converges to
f in the norm topology of KSp[Rn] for each 1 � p � ∞.

8
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Proof. It is easy to see that both Cb[Rn] and UBC[Rn] are subsets of KSp[Rn] for 1 � p � ∞.
Thus, it suffices to prove that τM -lim fn = f implies that limn→∞ ‖fn − f ‖KSp = 0. This
now follows from the fact that each box, used in our definition of the KSp[Rn] norm, is a
compact subset of Rn. �
Theorem 19. Suppose that T̂ (t) is a transition semigroup defined on Cb[Rn], with weak
generator Â. Let T (t) be the extension of T̂ (t) to KSp[Rn]. Then T (t) is strongly continuous,
and the extension A of Â to KSp[Rn] is the strong generator of T (t).

Proof. First observe that the dual of Cb[Rn] is M[Rn], which is contained in KSp[Rn] for
1 � p � ∞. Thus we can apply theorem 12 to show that T̂ (t) has a bounded extension to
KS2[Rn]. It is easy to show that the extended operator T (t) is a semigroup. Since the τM

topology on Cb[Rn] is stronger than the norm topology on KS2[Rn], we see that the generator
A of T (t) is strong. �

4.2. Feynman path integral

Historically, the mathematics community has had two responses to the introduction of a new
mathematical idea or method into physics. The first response has been to fit the idea or method
into an existing framework. The second and more exciting is when such an idea or method
leads to the development of a new branch of mathematics.

The most prevalent and successful response has been in finding an existing mathematical
structure that will reasonably accommodate the physical theory and provide (at least) the
framework for mathematical rigor. An excellent example of this is the introduction of matrix
algebra into the Heisenberg formulation of quantum theory (e.g., matrix mechanics) by Born
and Jordan [BHJ]. This made it possible for Schrödinger to show that, in the non-relativistic
case, his wave mechanics was equivalent to Heisenberg’s theory. This was later shown to
be rigorously true mathematically via the unitary equivalence between l2 and L2 as separable
Hilbert spaces (cf, von Neumann [VN2]). However, even in this case, we should not conclude
that this is the complete story. There have always been physical advantages in looking at and
working with some problems using the Heisenberg formulation. In fact, in 1964, Dirac strongly
suggested on physical grounds that, at the quantum field level, Heisenberg’s formulation is
much more fundamental (see [BO], p 130). Furthermore, recent studies strongly indicate
that the mathematical concept of isometric isomorphism is neither necessary nor sufficient for
physical equivalence. (For example, it is known, [GZA], that the Dirac operator is non-local
in time, while the square-root operator is non-local in space, but are unitarily equivalent.)

In some rare but important instances, there is no obvious mathematical structure which
can completely accommodate the theory in the manner presented by physicists. In this case,
mathematicians have extended and/or adapted an existing mathematical theory, developed
new mathematical structures or suggested (in frustration) that any conclusions derived from
the use of these ideas or methods are at least suspect. Over the last sixty years, all of the
above positions have appeared in response to Feynman’s introduction of his path integral into
quantum theory.

Since his path integral is the object of this section, let us consider the simple case of a
free particle in non-relativistic quantum theory in R3:

ih̄
∂ψ(x, t)

∂t
− h̄2

2m
�ψ(x, t) = 0, ψ(x, s) = δ(x − y). (4.1)

The solution can be computed directly:

ψ(x, t) = K [x, t; y, s] =
[

2π ih̄(t − s)

m

]−3/2

exp

[
im

2h̄

|x − y|2
(t − s)

]
.

9
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Feynman wrote the above solution to equation (4.1) as

K[x, t; y, s] =
∫ x(t)=x

x(s)=y

Dx(τ ) exp

{
im

2h̄

∫ t

s

∣∣∣∣dx

dt

∣∣∣∣
2

dτ

}
, (4.2)

where∫ x(t)=x

x(s)=y

Dx(τ ) exp

{
im

2h̄

∫ t

s

∣∣∣∣dx

dt

∣∣∣∣
2

dτ

}

=: lim
N→∞

[
m

2π ih̄ε(N)

]3N/2 ∫
R3

N∏
j=1

dxj exp

⎧⎨
⎩ i

h̄

N∑
j=1

[
m

2ε(N)
(xj − xj−1)

2

]⎫⎬
⎭ ,

(4.3)

with ε(N) = (t − s)/N .

Problems

Feynman’s objective was to develop an approach to quantum theory which would avoid the
use of a Hamiltonian. Equation (4.2) can be viewed as an attempt to ‘apparently’ define an
integral over the space of all continuous paths of the exponential of an integral of the classical
Lagrangian on configuration space. Thus, his objective was (partly) accomplished.

However, this approach (using the Lagrangian directly) has led to a new method for
quantizing physical systems, called the path integral method. It is now used almost exclusively
by large groups (in all branches of physics) and has also been used (formally) by researchers
in both mathematics and mathematical physics. Thus, we must conclude that Feynman’s
formulation (as he proposed it) is both physically and mathematically distinct from those of
Heisenberg and Schrödinger. (Feynman showed that it was equivalent to the other two.)

From a mathematical point of view, this leads to a number of problems:

• The kernel K [x, t; y, s] and δ(x) are not in L2[R3], the standard space for quantum theory.
• The kernel K [x, t; y, s] cannot be used to define a measure.

Thus, a natural question is: Does there exist a separable Hilbert space containing
K [x, t; y, s] and δ(x) which also allows the convolution and Fourier transform as bounded
operators? A positive answer to this question is necessary if we are to make sense of
equation (4.3) and have a representation space for the Feynman formulation of quantum
theory (as presented).

The properties of KS2[Rn] derived earlier suggest that it may be a more appropriate
Hilbert space, compared to L2[Rn], for the Feynman formulation. It is easy to prove that both
the position and momentum operators have closed densely defined extensions to KS2[Rn].
Furthermore, the extensions of F and C insure that both the Schrödinger and Heisenberg theory
have faithful representations on KS2[Rn].

Since KS2[Rn] contains the space of measures, it follows that all the approximating
sequences for the Dirac measure converge strongly to it in the KS2[Rn] topology. (For
example,

[
sin(λ · x)

/
(λ · x)

] ∈ KS2[Rn] and converges strongly to δ(x).) Thus, the finitely
additive set function defined on the Borel sets (Feynman kernel [FH]): (with m = 1 and
h̄ = 1)

Kf[t, x; s, B] =
∫

B

(2π i(t − s))−n/2 exp{i|x − y|2/2(t − s)} dy

is in KS2[Rn] and ‖Kf[t, x; s, B]‖KS � 1, while ‖Kf[t, x; s, B]‖M = ∞ (the total variation
norm) and

Kf[t, x; s, B] =
∫

Rn

Kf[t, x; τ, dz]Kf[τ, z; s, B], (HK-integral).

10
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Definition 20. Let Pn = {t0, τ1, t1, τ2, . . . , τn, tn} be a HK-partition for a function
δn(s), s ∈ [0, t] for each n, with limn→∞ �μn = 0 (mesh). Set �tj = tj − tj−1, τ0 = 0
and, for ψ ∈ KS2[Rn], define∫

Rn[0,t]
Kf[Dλx(τ );x(0)] = e−λt

[[λt]]∑
k=0

(λt)k

k!

⎧⎨
⎩

k∏
j=1

∫
Rn

Kf[tj , x(τj ); tj−1, dx(τj−1)]

⎫⎬
⎭,

and ∫
Rn[0,t]

Kf[Dx(τ );x(0)]ψ[x(0)] = lim
λ→∞

∫
Rn[0,t]

Kf[Dλx(τ );x(0)]ψ[x(0)] (4.4)

whenever the limit exists.

Remark 21. In the above definition we have used the Poisson process. This is not accidental
but appears naturally from a physical analysis of the information that is knowable in the
micro-world (see [GZ]). In fact, it has been suggested by Kolokoltsov [KO] that such jump
processes often provide another effective way to give meaning to the Feynman path integral
and also offers a nice approach to Feynman diagrams.

The next result is now elementary, since KS2[Rn] is closed under convolution.

Theorem 22. The function ψ(x) ≡ 1 ∈ KS2[Rn] and∫
Rn[s,t]

Kf[Dx(τ );x(s)] = Kf[t, x; s, y] = 1√
[2π i(t − s)]n

exp{i|x − y|2/2(t − s)}.

The above result is what Feynman was trying to obtain without the appropriate space. A
more general (sum over paths) result, that covers almost all application areas, will appear
later, where these spaces have been used to provide a generalization of the constructive
representation theory for the Feynman operator calculus (see [GZ1] and also [GZ] for other
applications).

If we treat K [x, t; y, s] as the kernel for an operator acting on good initial data, then a
partial solution has been obtained by a number of workers. (See [GZ1] for references to all
the important contributions in this direction.)

A related approach to the Feynman path integral can be found in the work of Fujiwara
and Kumano-go (see [FK1], [FK2] and references therein). For a survey of this approach, see
[FK3]. They have systematically developed a time-slicing approximation method that covers
a large portion of classical quantum theory. They restrict themselves to scalar potentials with
polynomial growth. However, their method seems general enough to eventually include the
additional cases. (They show the power of their approach by providing an analytic formula
for the second term of the semi-classical asymptotic expansion of the Feynman path integral.)

4.3. Examples

A standard method is to compute the Wiener path integral for the problem under consideration
and then use analytic continuation in the mass to provide a rigorous meaning for the Feynman
path integral. The following example provides a path integral representation for a problem
that cannot be solved using analytic continuation via a Gaussian kernel (see Gill and Zachary
[GZ3]). It is shown that, if the vector potential A is constant, μ = mc/h̄, and β is the standard
beta matrix, then the solution to the square-root equation for a spin 1/2 particle:

ih̄∂ψ(x, t)
/
∂t =

{
β

√
c2
(

p − e

c
A
)2

+ m2c4

}
ψ(x, t), ψ(x, 0) = ψ0(x),

11



J. Phys. A: Math. Theor. 41 (2008) 495206 T L Gill and W W Zachary

is given by

ψ(x, t) = U[t, 0]ψ0(x) =
∫

R3
exp

{ ie

2h̄c
(x − y) · A

}
K [x, t; y, 0] ψ0(y) dy,

where

K[x, t; y, 0] = ictμ2β

4π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−H
(1)
2 [μ(c2t2 − ||x − y ||2)1/2]

[c2t2 − ||x − y ||2]
, ct < −||x ||,

−2iK2[μ(||x − y ||2 − c2t2)1/2]

π [||x − y ||2 − c2t2]
, c|t | < ||x ||,

H
(2)
2 [μ(c2t2 − ||x − y ||2)1/2]

[c2t2 − ||x − y ||2]
, ct > ||x ||.

The function K2(·) is a modified Bessel function of the third kind of second order, while
H

(1)
2 ,H

(2)
2 are Hankel functions (see Gradshteyn and Ryzhik [GRRZ]). Thus, we have a

kernel that is far from the standard form. This example was first introduced in [GZ2], where
we only considered the kernel for the Bessel function term. In that case, it was shown that,
under appropriate conditions, that term will reduce to the free-particle Feynman kernel and, if
we set μ = 0, we get the kernel for a (spin 1/2) massless particle. In closing this section, we
remark that the square-root operator is unitarily equivalent to the Dirac operator (in the case
discussed).

4.4. The kernel problem

Since any semigroup that has a kernel representation will automatically generate a path integral
via the reproducing property, a fundamental question is Under what general conditions can
we expect a given (time-independent) generator of a semigroup to have an associated kernel?
In this section we discuss a class of general conditions for unitary groups. It will be clear that
the results of this section carry over to semigroups with minor changes.

Let A(x, p) denote a k × k matrix operator [Aij (x, p)], i, j = 1, 2, . . . , k, whose
components are pseudodifferential operators with symbols aij (x,η) ∈ C∞(Rn × Rn) and
we have, for any multi-indices α and β,∣∣a(α)

ij (β)(x,η)
∣∣ � Cαβ(1 + |η|)m−ξ |α|+δ|β|, (4.5)

where

a
(α)

ij (β)(x,η) = ∂αpβaij (x,η),

with ∂l = ∂/∂ηl , and pl = (1/i)(∂/∂xl). The multi-indices are defined in the usual manner
by α = (α1, . . . , αn) for integers αj � 0, and |α| = ∑n

j=1 αj , with similar definitions for β.

The notation for derivatives is ∂α = ∂
α1
1 · · · ∂αn

n and pβ = p
β1
1 · · · pβn

n . Here, m,β and δ are
real numbers satisfying 0 � δ < ξ . Equation (4.5) states that each aij (x,η) belongs to the
symbol class Sm

ξ,δ (see [SH]).
Let a(x,η) = [aij (x,η)] be the matrix-valued symbol for A(x,η), and let

λ1(x,η) · · · λk(x,η) be its eigenvalues. If |·| is the norm in the space of k × k matrices,
we assume that the following conditions are satisfied by a(x,η). For 0 < c0 < |η| and x ∈ Rn

we have

(i)
∣∣a(α)

(β)(x,η)
∣∣ � Cαβ |a(x,η)| (1 + |η)|)−ξ |α|+δ|β| (hypoellipticity),

12



J. Phys. A: Math. Theor. 41 (2008) 495206 T L Gill and W W Zachary

(ii) λ0(x,η) = max
1�j�k

Reλj (x,η) < 0,

(iii) |a(x,η)|
|λ0(x,η)| = O[(1 + |η|)(ξ−δ)/(2k−ε)], ε > 0.

We assume that A(x, p) is a selfadjoint generator of a unitary group U(t, 0), so that

U(t, 0)ψ0(x) = exp[(i/h̄)tA(x, p)]ψ0(x) = ψ(x, t)

solves the Cauchy problem

(ih̄)∂ψ(x, t)/∂t = A(x, p)ψ(x, t), ψ(x, t) = ψ0(x). (4.6)

Definition 23. We say that Q(x, t,η, 0) is a symbol for the Cauchy problem (4.6) if ψ(x, t)

has a representation of the form

ψ(x, t) = (2π)−n/2
∫

Rn

ei(x,η)Q(x, t,η, 0)ψ̂0(η) dη. (4.7)

It is sufficient that ψ0 belongs to the Schwartz space S(Rn), which is contained in the domain
of A(x, p), in order that (4.7) makes sense.

Following Shishmarev [SH], and using the theory of Fourier integral operators, we can
define an operator-valued kernel for U(t, 0) by

K(x, t; y, 0) = (2π)−n/2
∫

Rn

ei(x−y,η)Q(x, t,η, 0) dη,

so that

ψ(x, t) = U(t, 0)ψ0(x) = (2π)−n/2
∫

Rn

K(x, t; y, 0)ψ0(y) dy. (4.8)

The following results are due to Shishmarev [SH].

Theorem 24. If A(x, p) is a selfadjoint generator of a strongly continuous unitary group with
domain D,S(Rn) ⊂ D in L2(Rn), such that conditions (1)–(3) are satisfied. Then there exists
precisely one symbol Q(x, t,η, 0) for the Cauchy problem (4.6).

Theorem 25. If we replace our condition (3) in theorem 24 by the stronger condition

(3′)
|a(x,η)|
|λ0(x,η)| = O

[
(1 + |η|)(ξ−δ)/(3k−1−ε)

]
, ε > 0, |η| > c0,

then the symbol Q(x, t,η, 0) of the Cauchy problem (4.6) has the asymptotic behavior near
t = 0:

Q(x, t,η, 0) = exp[−(i/h̄)ta(x,η)] + o(1),

uniformly for x, y ∈ Rn.

Now, using theorem 24 we see that, under the stronger condition (3’), the kernel K(x, t; y, 0)

satisfies

K(x, t; y, 0) =
∫

Rn

exp[i(x − y,η) − (i/h̄)ta(x,η)]
dη

(2π)n/2

+
∫

Rn

exp[i(x − y,η)]
dη

(2π)n/2
o(1).

In order to see the power of KS2(Rn), first note that A(x, p) has a selfadjoint extension
to KS2(Rn), which also generates a unitary group. This means that we can construct a path
integral in the same (identical) way as was done for the free-particle propagator (i.e., for all
Hamiltonians with symbols in Sm

α,δ). Furthermore, it follows that the same comment applies
to any Hamiltonian that has a kernel representation, independent of its symbol class. The
important point of this discussion is that no initial data nor Gaussian form for the kernel is
required!

13
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4.5. Discussion

A natural reaction to any suggestion that we replace the Lebesgue integral by one based on
a finitely additive measure would be negative. After all we would lose all of the advantages
of the powerful theorems (dominated convergence theorem, monotone convergence theorem,
etc) that depend on the countable additivity of the measure. Those strongly vested in using L2

for the C∗-algebra approach to quantum theory via the GNS construction may also feel obliged
to object to such a proposed change. These are all reasonable concerns. However, we do not
lose any of the powerful theorems found via countable additivity. First of all the HK-measure
is an extension of the Lebesgue measure so that all of its power is still available to us. In fact,
Henstock has extended each of the standard theorems to the HK-integral (see [HS]). Those
concerned with the C∗-algebra approach to quantum theory need not be concerned since KS2

is a separable Hilbert space and is also amenable to the GNS construction.

5. Conclusion

In this paper we have shown how to construct a natural class of separable Banach spaces
KSp which parallels the standard Lp spaces but contains them as dense compact embeddings.
These spaces are of particular interest because they contain the Henstock–Kurzweil integrable
functions and the HK-measure, which generalizes the Lebesgue measure. We have also
constructed the corresponding spaces KSm

p of Sobolev type.

We have used KS2 to construct the free-particle path integral in the manner originally
intended by Feynman. We have suggested that KS2 has a claim as the natural representation
space for the Feynman formulation of quantum theory in that it allows representations for both
the Heisenberg and Schrödinger representations, a property not shared by L2.

In the analytical theory of Markov processes, it is well known that, in general, the
semigroup T (t) associated with the process is not strongly continuous on Cb[Rn], the space of
bounded continuous functions or on UBC[Rn], the bounded uniformly continuous functions.
We have shown that the weak generator defined by the mixed locally convex topology on
Cb[Rn] is a strong generator on KSp[Rn] (e.g., T (t) is strongly continuous on KSp[Rn] for
1 � p � ∞).
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